SRCMap: Energy Proportional Storage using Dynamic Consolidation

Akshat Verma¹ Ricardo Koller² **Luis Useche**² Raju Rangaswami²

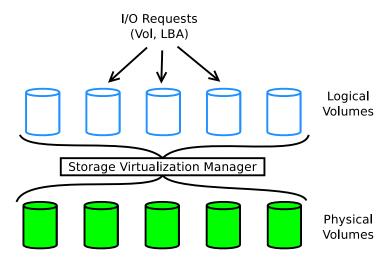
¹IBM Research, India

²School of Computing and Information Sciences College of Engineering and Computing

FAST Conference, 2010

- ► Current power density of data centers is 100 W/sq.ft & increasing 15-20% per year.
- ► Storage consume 10-25% of computing equipment.
- ▶ Storage load low (10-30%), but still peak power consumed.
- ► CPUs are more energy proportionality than storage.
- ► Consolidation is a well known technique for energy proportionality in virtualized servers.

Storage Consolidation?


Can we use a storage virtualization layer to design a practical energy proportional storage system?

▶ Storage virtualization I/O indirection useful for consolidation.

Challenge

Moving logical volumes from one device to another is prohibitively expensive.

Background: Storage Virtualization

Outline

- 1. Motivation
- 2. Design
- 3. Evaluation
- 4. Conclusions & Future Work

Workloads

mail Our department mail server.

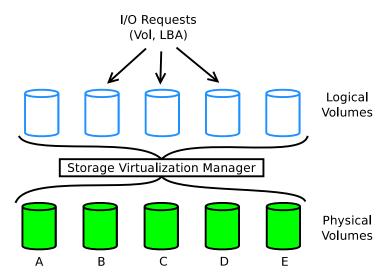
web-vm Virtual machine hosting two web-servers: CS web-mail & online course management.

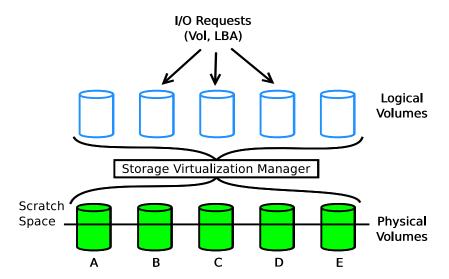
homes NFS server that serves the home directories for our research group.

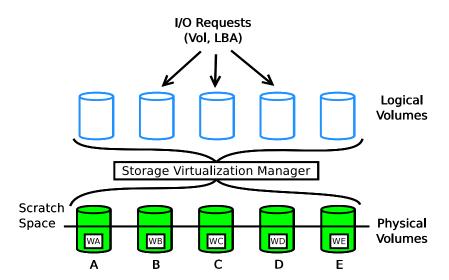
Block traces collected downstream of an active page cache for three weeks.

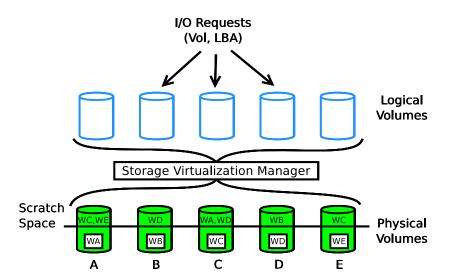
Observations

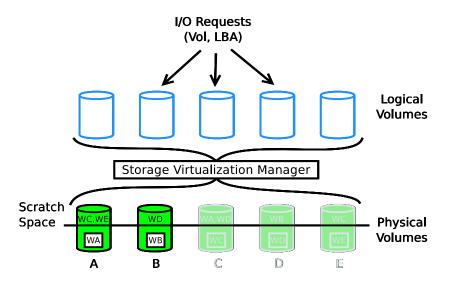
Observation 1


The active data set is only a small fraction of total storage used. (about 1.5-6.5%)


Observation 2


There is a significant variability in I/O load. (5-6 orders of magnitude)


Observation 3


More that 99% of the working set consist of *really popular* & *recently accessed* data.

Our Approach

Sample Characterize the logical volume to find the working set.

Replicate Create multiple working-set replicas in various physical volumes' scratch space.

Consolidate Based on I/O workload intensity, activate a sub-set of physical volumes and serve workloads either from original copies or working set replicas on these active disks.

Our Approach

-Initialization

Sample Characterize the logical volume to find the working set.

Replicate Create multiple working-set replicas in various physical volumes' scratch space.

Consolidate Based on I/O workload intensity, activate a sub-set of physical volumes and serve workloads either from original copies or working set replicas on these active disks.

-Every H hours

$\mathsf{Goals} \to \mathsf{Solutions}$

Goal
Fine grained proportionality
Low space overhead
Reliability
Workload Adaptation
Heterogeneity support

$\mathsf{Goals} \to \mathsf{Solutions}$

Goal	Solution
Fine grained proportionality	Multiple replica targets.
Low space overhead	Instead of entire volumes, only
	working-sets are replicated.
Reliability	Coarse-grained consolidation
	intervals. (hours)
Workload Adaptation	Update working set replicas
	with new data that lead to read
	misses.
Heterogeneity support	Performance-power ratio ac-
	counted for in the replica place-
	ment benefit function.

SRCMap work-flow

Event	Response
Initialization	Detect working-sets of logical volumes &
	create replicas.
Every H hours	Identify what volumes and replicas to ac-
	tivate the next H hours.
Change in workload	Same as initialization.

SRCMap work-flow

Event	Response
Initialization	Detect working-sets of logical volumes &
	create replicas.
Every H hours	Identify what volumes and replicas to
	activate the next H hours.
Change in workload	Same as initialization.

Replica Placement

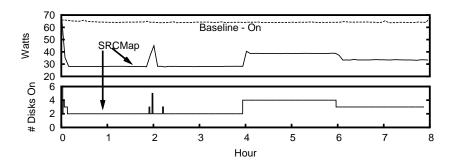
- ▶ Replication benefit based on:
 - 1. Working set stability
 - 2. Average load
 - 3. Power efficiency of primary physical volume.
 - 4. Working set size
- Assign space with priorities based on benefit.
- Update replica creation benefit as additional replicas are created.
- ► Algorithm executes until scratch spaces are full.

Active Replica Identification

- ► Calculate predicted aggregate workload IOPS.
- ► Compute minimum number of volumes to serve the aggregate IOPS.
- ▶ Identify replicas for inactive volumes.
- ► The number of active disks is incremented by one in case no active replica has been identified for some inactive volume.

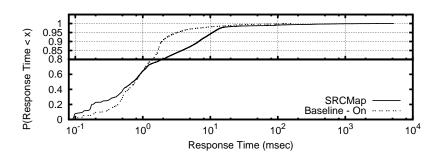
Workloads & Configuration

- ▶ 8 workloads to independent data volumes.
- ► Mix of web-servers of our CS department, and file server, SVN, and WiKi for our research group.
- ▶ H = 2. Change active replicas every 2 hours.
- Two minute disk time-outs.
- ▶ Working sets & replicas based on three week workload history.
- ▶ We report results of replaying the next 8 most active hours in the traces.
- ▶ We assume an oracle for estimation of load during each consolidation interval.

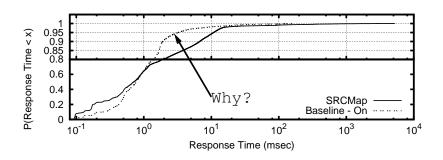

Storage test-bed

- ▶ One machine with 8 SATA ports.
- ▶ Intel P4 HT 3GHz, 1GB memory.
- ► Trace played back using *btreplay*.
- Dedicated power supply for disks connected to power meter.
- ▶ Watts up? PRO power meter: measures power every second with resolution of 0.1W.

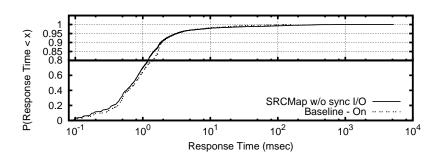
Power


▶ Power consumption measured every second & active disks every 5 seconds.

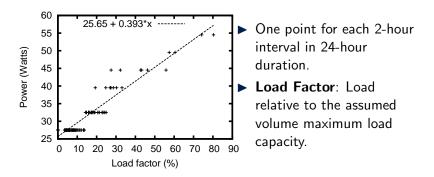
▶ Power consumption measured every second & active disks every 5 seconds.


Disks off	Power Saved
4.33	23.5 (35.5%)

Response time


- ▶ After 1ms, Baseline On demonstrate better performance.
- ▶ 8% of requests with latencies \geq 10ms.
- ▶ 2% of requests with latencies \geq 100ms.

Response time


- ▶ After 1ms, Baseline On demonstrate better performance.
- ▶ 8% of requests with latencies \geq 10ms.
- ▶ 2% of requests with latencies \geq 100ms.
- ▶ Synchronization I/Os issued at beginning of each interval.

Response time

- ▶ After 1ms, Baseline On demonstrate better performance.
- ▶ 8% of requests with latencies \geq 10ms.
- ▶ 2% of requests with latencies \geq 100ms.
- ▶ Synchronization I/Os issued at beginning of each interval.
- ▶ Replaying without sync I/Os follows Baseline-On more closely.

Energy proportionality

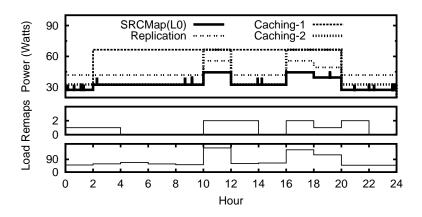
SRCMap is able to achieve close to N-level proportionality for a system with N physical volumes.

Conclusions

- ▶ We proposed and evaluate SRCMap, a storage virtualization solution for energy proportional storage.
- ➤ SRCMap establishes the feasibility of energy proportional storage systems.
- SRCMap meets all goals we set out to achieve energy proportional storage:
 - √ Low space overhead
 - √ Reliability
 - √ Workload adaptation
 - √ Heterogeneity support
 - √ Fine grain energy proportionality

Future Work

- ▶ Models to predict I/O workload intensity.
- ▶ Models that estimate the performance impact of storage consolidation.
- ► Investigate the presence of workload correlation for better workload estimation and consolidation decision.
- ▶ Optimizing the scheduling of synchronization I/Os to minimize impact on foreground requests.


http://dsrl.cs.fiu.edu/projects/srcmap/

Questions?

Related Work

- ➤ Singly redundant schemes: Spin down volumes with redundant data during low load.
- ► Geared RAIDs: Redundancy on several disks and each disk spun down represents a gear shift.
- ► Caching systems: Cache of popular data on additional storage.
- ▶ Write Offloading: Increase disk idle periods by redirecting writes to alternate locations.

Other Methods

