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Abstract

We investigate the problem of creating an energy pro-
portional storage system through power-aware dynamic
storage consolidation. Our proposal, Sample-Replicate-
Consolidate Mapping (SRCMap), is a storage virtual-
ization layer optimization that enables energy propor-
tionality for dynamic I/O workloads by consolidating
the cumulative workload on a subset of physical vol-
umes proportional to the I/O workload intensity. Instead
of migrating data across physical volumes dynamically
or replicating entire volumes, both of which are pro-
hibitively expensive, SRCMap samples a subset of blocks
from each data volume that constitutes its working set
and replicates these on other physical volumes. Dur-
ing a given consolidation interval, SRCMap activates a
minimal set of physical volumes to serve the workload
and spins down the remaining volumes, redirecting their
workload to replicas on active volumes. We present both
theoretical and experimental evidence to establish the
effectiveness of SRCMap in minimizing the power con-
sumption of enterprise storage systems.

1 Introduction

Energy Management has emerged as one of the most
significant challenges faced by data center operators.
The current power density of data centers is estimated
to be in the range of 100 W/sq.ft. and growing at
the rate of 15-20% per year [22]. Barroso and Hölzle
have made the case for energy proportional computing
based on the observation that servers in data centers to-
day operate at well below peak load levels on an aver-
age [2]. A popular technique for delivering energy pro-
portional behavior in servers is consolidation using vir-
tualization [4, 24, 26, 27]. These techniques (a) utilize
heterogeneity to select the most power-efficient servers
at any given time, (b) utilize low-overhead live Virtual
Machine (VM) migration to vary the number of active
servers in response to workload variation, and (c) pro-
vide fine-grained control over power consumption by al-
lowing the number of active servers to be increased or
decreased one at a time.

Storage consumes roughly 10-25% of the power
within computing equipment at data centers depending
on the load level, consuming a greater fraction of the
power when server load is lower [3]. Energy proportion-
ality for the storage subsystem thus represents a critical
gap in the energy efficiency of future data centers. In
this paper, we the investigate the following fundamental
question: Can we use a storage virtualization layer to
design a practical energy proportional storage system?

Storage virtualization solutions (e.g., EMC Invista [7],
HP SVSP [6], IBM SVC [12], NetApp V-Series [19])
provide a unified view of disparate storage controllers
thus simplifying management [13]. Similar to server vir-
tualization, storage virtualization provides a transparent
I/O redirection layer that can be used to consolidate frag-
mented storage resource utilization. Similar to server
workloads, storage workloads exhibit significant varia-
tion in workload intensity, motivating dynamic consoli-
dation [16]. However, unlike the relatively inexpensive
VM migration, migrating a logical volume from one de-
vice to another can be prohibitively expensive, a key fac-
tor disrupting storage consolidation solutions.

Our proposal, Sample-Replicate-Consolidate Map-
ping (SRCMap), is a storage virtualization layer op-
timization that makes storage systems energy propor-
tional. The SRCMap architecture leverages storage vir-
tualization to redirect the I/O workload without any
changes in the hosts or storage controllers. SRCMap ties
together disparate ideas from server and storage power
management (namely caching, replication, transparent
live migration, and write off-loading) to minimize the
power drawn by storage devices in a data center. It con-
tinuously targets energy proportionality by dynamically
increasing or decreasing the number of active physical
volumes in a data center in response to variation in I/O
workload intensity.

SRCMap is based on the following observations in
production workloads detailed in§3: (i) the active data
set in storage volumes is small,(ii) this active data set
is stable, and(iii) there is substantial variation in work-
load intensity both within and across storage volumes.
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Thus, instead of creating full replicas of data volumes,
SRCMap creates partial replicas that contain the working
sets of data volumes. The small replica size allows cre-
ating multiple copies on one or more target volumes or
analogously allowing one target volume to host replicas
of multiple source volumes. Additional space is reserved
on each partial replica to offload writes [18] to volumes
that are spun down.

SRCMap enables a high degree of flexibility in spin-
ning down volumes because it activates either the pri-
mary volume or exactly one working set replica of each
volume at any time. Based on the aggregate workload
intensity, SRCMap changes the set of active volumes in
the granularity of hours rather than minutes to address
the reliability concerns related to the limited number of
disk spin-up cycles. It selects active replica targets that
allow spinning down the maximum number of volumes,
while serving the aggregate storage workload. The vir-
tualization layer remaps the virtual to physical volume
mapping as required thereby replacing expensive data
migration operations with background data synchroniza-
tion operations. SRCMap is able to create close toN
power-performance levels on a storage subsystem with
N volumes, enabling storage energy consumption pro-
portional to the I/O workload intensity.

In the rest of this paper, we propose design goals for
energy proportional storage systems and examine exist-
ing solutions (§2), analyze storage workload characteris-
tics (§3) that motivate design choices (§4), provide de-
tailed system design, algorithms, and optimizations (§5
and§6), and evaluate for energy proportionality (§7). We
conclude with a fairly positive view on SRCMap meet-
ing its energy proportionality goals and some directions
for future work (§8).

2 On Energy Proportional Storage

In this section, we identify the goals for a practical and
effective energy proportional storage system. We also
examine existing work on energy-aware storage and the
extent to which they deliver on these goals.

2.1 Design Goals
1. Fine-grained energy proportionality: Energy pro-
portional storage systems are uniquely characterized by
multiple performance-power levels. True energy propor-
tionality requires that for a system with a peak power of
Ppeak for a workload intensityρmax, the power drawn
for a workload intensityρi would bePpeak × ρi

ρmax

.

2. Low space overhead: Replication-based strategies
could achieve energy proportionality trivially by repli-
cating each volume on all the otherN − 1 volumes. This
would requireN copies of each volume, representing an
unacceptable space overhead. A practical energy propor-

Design Write Caching Singly Geared
Goal offloading systems Redundant RAID

Proportionality ∼ " " ∼

Space overhead X X " "

Reliability " " X X

Adaptation " X X X

Heterogeneity ∼ ∼ ∼ "

Table 1: Comparison of Power Management Tech-
niques.∼ indicates the goal is partially addressed.

tional system should incur minimum space overhead; for
example,25% additional space is often available.

3. Reliability: Disk drives are designed to survive a lim-
ited number of spin-up cycles [14]. Energy conservation
based on spinning down the disk must ensure that the
additional number of spin-up cycles induced during the
disks’ expected lifetime is significantly lesser than the
manufacturer specified maximum spin-up cycles.

4. Workload shift adaptation: The popularity of data
changes, even if slowly over time. Power management
for storage systems that rely on caching popular data
over long intervals should address any shift in popular-
ity, while ensuring energy proportionality.

5. Heterogeneity support: A data center is typically
composed of several substantially different storage sys-
tems (e.g., with variable numbers and types of drives).
An ideal energy proportional storage system should ac-
count for the differences in their performance-power ra-
tios to provide the best performance at each host level.

2.2 Examining Existing Solutions
It has been shown that the idleness in storage workload
is quite low for typical server workloads [31]. We ex-
amine several classes of related work that represent ap-
proaches to increase this idleness for power minimization
and evaluate the extent to which they address our design
goals. We next discuss each of them and summarize their
relative strengths in Table 1.

Singly redundant schemes.The central idea used by
these schemes is spinning down disks with redundant
data during periods of low I/O load [9, 21, 28]. RI-
MAC [28] uses memory-level and on-disk redundancy to
reduce passive spin ups in RAID5 systems, enabling the
spinning down of one out of theN disks in the array.
The Diverted Accesses technique [21] generalizes this
approach to find the best redundancy configuration for
energy, performance, and reliability for all RAID levels.
Greenanet al. propose generic techniques for manag-
ing power-aware erasure coded storage systems [9]. The
above techniques aim to support two energy levels and
do not address fine-grained energy proportionality.

Geared RAIDs. PARAID [30] is a gear-shifting mech-
anism (each disk spun down represents a gear shift) for
a parity-based RAID. To implementN − 1 gears in a
N disk array with used storageX, PARAID requires
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O(X logN) space, even if we ignore the space required
for storing parity information. DiskGroup [17] is a mod-
ification of RAID-1 that enables a subset of the disks
in a mirror group to be activated as necessary. Both
techniques incur large space overhead. Further, they do
not address heterogeneous storage systems composed of
multiple volumes with varying I/O workload intensities.

Caching systems.This class of work is mostly based
on caching popular data on additional storage [5, 15, 25]
to spin down primary data drives. MAID [5], an archival
storage system, optionally uses additional cache disks for
replicating popular data to increase idle periods on the
remaining disks. PDC [20] does not use additional disks
but rather suggests migrating data between disks accord-
ing to popularity, always keeping the most popular data
on a few active disks. EXCES [25] uses a low-end flash
device for caching popular data and buffering writes to
increase idle periods of disk drives. Leeet al. [15] sug-
gest augmenting RAID systems with an SSD for a simi-
lar purpose. A dedicated storage cache does not provide
fine-grained energy proportionality; the storage system
is able to save energy only when the I/O load is low and
can be served from the cache. Further, these techniques
do not account for the reliability impact of frequent disk
spin-up operations.

Write Offloading. Write off-loading is an energy sav-
ing technique based on redirecting writes to alternate
locations. The authors of write-offloading demonstrate
that idle periods at a one minute granularity can be sig-
nificantly increased by off-loading writes to a different
volume. The reliability impact due to frequent spin-up
cycles on a disk is a potential concern, which the au-
thors acknowledge but leave as an open problem. In con-
trast, SRCMap increases the idle periods substantially by
off-loading popular data reads in addition to the writes,
and thus more comprehensively addressing this impor-
tant concern. Another important question not addressed
in the write off-loading work is: with multiple volumes,
which active volume should be treated as a write off-
loading target for each spun down volume? SRCMap
addresses this question clearly with a formal process for
identifying the set of active disks during each interval.

Other techniques. There are orthogonal classes of
work that can either be used in conjunction with SR-
CMap or that address other target environments. Hiber-
nator [31] uses DRPM [10] to create a multi-tier hierar-
chy of futuristic multi-speed disks. The speed for each
disk is set and data migrated across tiers as the workload
changes. Pergamum is an archival storage system de-
signed to be energy-efficient with techniques for reduc-
ing inter-disk dependencies and staggering rebuild oper-
ations [23]. Gurumurthiet al. propose intra-disk par-
allelism on high capacity drives to improve disk band-

Workload Size Reads [GB] Writes [GB] Volume
Volume [GB] Total Uniq Total Uniq accessed

mail 500 62.00 29.24 482.10 4.18 6.27%
homes 470 5.79 2.40 148.86 4.33 1.44%
web-vm 70 3.40 1.27 11.46 0.86 2.8%

Table 2: Summary statistics of one week I/O work-
load traces obtained from three different volumes.
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Figure 1: Variability in I/O workload intensity.

width without increasing power consumption [11]. Fi-
nally, Ganeshet al. propose log-structured striped writ-
ing on a disk array to increase the predictability of ac-
tive/inactive spindles [8].

3 Storage Workload Characteristics

In this section, we characterize the nature of I/O access
on servers using workloads from three production sys-
tems, specifically looking for properties that help us in
our goal of energy proportional storage. The systems in-
clude an email server (mail workload), a virtual machine
monitor running two web servers (web-vmworkload),
and a file server (homesworkload). Themail workload
serves user INBOXes for the entire Computer Science
department at FIU. Thehomesworkload is that of a
NFS server that serves the home directories for our re-
search group at FIU; activities represent those of a typical
researcher consisting of software development, testing,
and experimentation, the use of graph-plotting software,
and technical document preparation. Finally, theweb-vm
workload is collected from a virtualized system that hosts
two CS department web-servers, one hosting the depart-
ment’s online course management system and the other
hosting the department’s web-based email access portal.

In each system, we collected I/O traces downstream
of an active page cache for a duration of three weeks.
Average weekly statistics related to these workloads are
summarized in Table 2. The first thing to note is that the
weekly working sets (unique accesses during a week) is
a small percentage of the total volume size (1.5-6.5%).
This trend is consistent across all volumes and leads to
our first observation.

Observation 1 The active data set for storage volumes
is typically a small fraction of total used storage.

Dynamic consolidation utilizes variability in I/O
workload intensity to increase or decrease the number of
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Figure 2: Overlap in daily working sets for the mail
(m), homes (h), and web-vm (w) workloads.(i) Reads
and writes against working set , (ii) Reads against work-
ing set and (iii) Reads against working set, recently of-
floaded writes, and recent missed reads.

active devices. Figure 1 depicts large variability in I/O
workload intensity for each of the three workloads over
time, with as much as 5-6 orders of magnitude between
the lowest and highest workload intensity levels across
time. This highlights the potential of energy savings if
the storage systems can be made energy proportional.

Observation 2 There is a significant variability in I/O
workload intensity on storage volumes.

Based on our first two observations, we hypothe-
size that there is room for powering down physical vol-
umes that are substantially under-utilized by replicating
a small active working-set on other volumes which have
the spare bandwidth to serve accesses to the powered
down volumes. This motivatesSampleandReplicatein
SRCMap. Energy conservation is possible provided the
corresponding working set replicas can serve most re-
quests to each powered down volume. This would be
true if working sets are largely stable.

We investigate the stability of the volume working sets
in Fig. 2 for three progressive definitions of the working
set. In the first scenario, we compute the classical work-
ing set based on the last few days of access history. In
the second scenario, we additionally assume that writes
can be offloaded and mark all writes as hits. In the third
scenario, we further expand the working set to include re-
cent writes and past missed reads. For each scenario, we
compute the working set hits and misses for the follow-
ing day’s workload and study the hit ratio with change
in the length of history used to compute the working set.
We observe that the hit ratio progressively increases both
across the scenarios and as we increase the history length
leading us to conclude that data usage exhibits high tem-
poral locality and that the working set after including re-
cent accesses is fairly stable. This leads to our third ob-
servation (also observed earlier by Leunget al. [16]).

Observation 3 Data usage is highly skewed with more
than 99% of the working set consisting of some ’really
popular’ data and ’recently accessed’ data.

The first three observations are the pillars behind the
Sample, Replicateand Consolidateapproach whereby
we sample each volume for its working set, replicate

 0
 20
 40
 60
 80

R
ea

d-
id

le
 (

%
)

Interval Length
1sec 1min 2min 5min 8min 30min 60min

homes
web-vm

mail

Figure 3: Distribution of read-idle times.

these working sets on other volumes, and consolidate
I/O workloads on proportionately fewer volumes dur-
ing periods of low load. Before designing a new system
based on the above observations, we study the suitabil-
ity of a simplerwrite-offloadingtechnique for building
energy proportional storage systems. Write off-loading
is based on the observation that I/O workloads are write
dominated and simply off-loading writes to a different
volume can cause volumes to be idle for a substantial
fraction (79% for workloads in the original study) of
time [18]. While write off-loading increases the fraction
of idle time of volumes, the distribution of idle time du-
rations due to write off-loading raises an orthogonal, but
important, concern. If these idle time durations are short,
saving power requires frequent spinning down/up of the
volumes which degrades reliability of the disk drives.

Figure 3 depicts the read-idle time distributions of the
three workloads. It is interesting to note that idle time
durations for thehomesandmail workloads are all less
than or equal to 2 minutes, and for theweb-vmthe ma-
jority are less than or equal to 5 minutes are all are less
than 30 minutes.

Observation 4 The read-idle time distribution (periods
of writes alone with no intervening read operations) of
I/O workloads is dominated by small durations, typically
less than five minutes.

This observation implies that exploiting all read-
idleness for saving power will necessitate spinning up
the disk at least 720 times a day in the case ofhomesand
mail and at least 48 times in the case ofweb-vm. This
can be a significant hurdle to reliability of the disk drives
which typically have limited spin-up cycles [14]. It is
therefore important to develop new techniques that can
substantially increase average read-idle time durations.

4 Background and Rationale

Storage virtualization managers simplify storage man-
agement by enabling a uniform view of disparate stor-
age resources in a data center. They export a storage
controller interface allowing users to create logical vol-
umes or virtual disks (vdisks) and mount these on hosts.
The physical volumes managed by the physical storage
controllers are available to the virtualization manager
as managed disks (mdisks) entirely transparently to the
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hosts which only view the logicalvdiskvolumes. A use-
ful property of the virtualization layer is the complete
flexibility in allocation ofmdisk extents tovdisks.

Applying server consolidation principles to storage
consolidation using virtualization would activate only the
most energy-efficientmdisks required to serve the ag-
gregate workload during any periodT . Data from the
othermdisks chosen to be spun down would first need to
be migrated to activemdisks to effect the change. While
data migration is an expensive operation, the ease with
which virtual-to-physical mappings can be reconfigured
provides an alternative approach. A naı̈ve strategy fol-
lowing this approach could replicate data for eachvdisk
on all themdisks and adapt to workload variations by
dynamically changing the virtual-to-physical mappings
to use only the selectedmdisks duringT . Unfortunately,
this strategy requiresN times additional space for aN
vdisk storage system, an unacceptable space overhead.

SRCMap intelligently uses the storage virtualization
layer as an I/O indirection mechanism to deliver a practi-
cally feasible, energy proportional solution. Since it op-
erates at the storage virtualization manager, it does not
alter the basic redundancy-based reliability properties of
the underlying physical volumes which is determined by
the respective physical volume (e.g., RAID) controllers.
To maintain the redundancy level, SRCMap ensures that
a volume is replicated on target volumes at the same
RAID level. While we detail SRCMap’s design and al-
gorithms in subsequent sections (§ 5 and§ 6), here we list
the rationale behind SRCMap’s design decisions. These
design decisions together help to satisfy the design goals
for an ideal energy proportional storage system.

I. Multiple replica targets. Fine-grained energy propor-
tionality requires the flexibility to increase or decrease
the number of active physical volumes one at a time.
Techniques that activate a fixed secondary device for
each data volume during periods of low activity cannot
provide the flexibility necessary to deactivate an arbi-
trary fraction of the physical volumes. In SRCMap, we
achieve this fine-grained control by creating a primary
mdisk for eachvdisk and replicating only the working
set of eachvdisk on multiple secondarymdisks. This
ensures that(a) every volume can be offloaded to one
of multiple targets and(b) each target can serve the I/O
workload for multiplevdisks. During peak load, each
vdisk maps to its primarymdisk and allmdisks are ac-
tive. However, during periods of low activity, SRCMap
selects a proportionately small subset ofmdisks that can
support the aggregate I/O workload for allvdisks.

II. Sampling. Creating multiple full replicas ofvdisks
is impractical. Drawing fromObservation 1(§ 3), SR-
CMap substantially reduces the space overhead of main-

taining multiple replicas by sampling only the working
set for eachvdisk and replicating it. Since the working
set is typically small , the space overhead is low.

III. Ordered replica placement. While sampling helps
to reduce replica sizes substantially, creating multiple
replicas for each sample still induces space overhead.
In SRCMap, we observe that all replicas are not created
equal; for instance, it is more beneficial to replicate a
lightly loaded volume than a heavily loaded one which is
likely to be active anyway. Similarly, a large working set
has greater space overhead; SRCMap chooses to create
fewer replicas aiming to keep it active, if possible. As we
shall formally demonstrate, carefully ordering the replica
placement helps to minimize the number of active disks
for fine-grained energy proportionality.

IV. Dynamic source-to-target mapping and dual data
synchronization. From Observation 2(§ 3), we know
that workloads can vary substantially over a period of
time. Hence, it is not possible to pre-determine which
volumes need to be active. Target replica selection for
any volume being powered down therefore needs to be
a dynamic decision and also needs to take into account
that some volumes have more replicas (or target choices)
than others. We use two distinct mechanisms for updat-
ing the replica working sets. The active replica lies in the
data path and is immediately synchronized in the case of
a read miss. This ensures that the active replica contin-
uouslyadaptswith change inworkload popularity. The
secondary replicas, on the other hand, use a lazy, incre-
mental data synchronization in the background between
the primary replica and any secondary replicas present
on activemdisks. This ensures that switching between
replicas requires minimal data copying and can be per-
formed fairly quickly.

V. Coarse-grained power cycling. In contrast to most
existing solutions that rely on fine-grained disk power-
mode switching, SRCMap implements coarse-grained
consolidation intervals (of the order of hours), during
each of which the set of activemdisks chosen by SR-
CMap does not change. This ensures normal disk life-
times are realized by adhering to the disk power cycle
specification contained within manufacturer data sheets.

5 Design Overview

SRCMap is built in a modular fashion to directly inter-
face with storage virtualization managers or be integrated
into one as shown in Figure 4. The overall architecture
supports the following distinct flows of control:

(i) the replica generation flow(Flow A) identifies the
working set for eachvdisk and replicates it on multiple
mdisks. This flow is orchestrated by theReplica Place-
ment Controllerand is triggered once when SRCMap
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Figure 4: SRCMap integrated into a Storage Vir-
tualization Manager. Arrows depict control flow.
Dashed/solid boxes denote existing/new components.

is initialized and whenever a configuration change (e.g.,
addition of a new workload or new disks) takes place.
Once a trigger is generated, theReplica Placement Con-
troller obtains a historical workload trace from theLoad
Monitor and computes the working set and the long-term
workload intensity for each volume (vdisk). The work-
ing set is then replicated on one or more physical vol-
umes (mdisks). The blocks that constitute the working
set for thevdisk and the target physical volumes where
these are replicated are managed using a common data
structure called theReplica Disk Map (RDM).

(ii) theactive disk identification flow(Flow B) identifies,
for a periodT , the activemdisks and activated repli-
cas for each inactivemdisk. The flow is triggered at
the beginning of the consolidation intervalT (e.g., every
2 hours) and orchestrated by theActive Disk Manager.
In this flow, theActive Disk Managerqueries theLoad
Monitor for expected workload intensity of eachvdisk
in the periodT . It then uses the workload information
along with the placement of working set replicas on tar-
getmdisks to compute the set of active primarymdisks
and a active secondary replicamdisk for each inactive
primarymdisk. It then directs theConsistency Manager
to ensure that the data on any selected active primary
or active secondary replica is current. Once consistency
checks are made, it updates theVirtual to Physical Map-
ping to redirect the workload to the appropriatemdisk.

(iii) the I/O redirection flow(Flow C) is an extension of
the I/O processing in thestorage virtualization manager
and utilizes the built-in virtual-to-physical re-mapping
support to direct requests to primaries or active repli-
cas. Further, this flow ensures that the working-set of
eachvdisk is kept up-to-date. To ensure this, whenever
a request to a block not available in the active replica is
made, aReplica Missevent is generated. On aReplica
Miss, theReplica Managerspin-ups the primarymdisk
to fetch the required block. Further, it adds this new
block to the working set of thevdisk in the RDM. We
next describe the key components of SRCMap.

5.1 Load Monitor
The Load Monitor resides in the storage virtualization
manager and records access to data on any of thevdisks
exported by the virtualization layer. It provides two inter-
faces for use by SRCMap – long-term workload data in-
terface invoked by theReplica Placement Controllerand
predicted short-term workload data interface invoked by
theActive Disk Manager.

5.2 Replica Placement Controller
The Replica Placement Controllerorchestrates the pro-
cess of Sampling (identifying working sets for each
vdisk) andReplicatingon one or more targetmdisks.
We use a conservative definition of working set that in-
cludes all the blocks that were accessed during a fixed
duration, configured as the minimum duration beyond
which the hit ratio on the working set saturates. Conse-
quently, we use20 days formail, 14 days forhomes and
5 days forweb-vm workload (Fig. 2). The blocks that
capture the working set for eachvdisk and themdisks
where it is replicated are stored in the RDM. The details
of the parameters and methodology used withinReplica
Placementare described in Section 6.1.

5.3 Active Disk Manager
The Active Disk Managerorchestrates theConsolidate
step in SRCMap. The module takes as input the work-
load intensity for eachvdisk and identifies if the primary
mdisk can be spun down by redirecting the workload to
one of the secondarymdisks hosting its replica. Once
the target set of activemdisks and replicas are identified,
theActive Disk Managersynchronizes the identified ac-
tive primaries or active secondary replicas and updates
the virtual-to-physical mapping of the storage virtualiza-
tion manager, so that I/O requests to avdisk could be
redirected accordingly. The Active Disk Manager uses a
Consistency Managerfor the synchronization operation.
Details of the algorithm used byActive Disk Managerfor
selecting activemdisks are described in Section 6.2.

5.4 Consistency Manager
The Consistency Managerensures that the primary
mdisk and the replicas are consistent. Before anmdisk
is spun down and a new replica activated, the new active
replica is made consistent with the previous one. In order
to ensure that the overhead during the re-synchronization
is minimal, an incremental point-in-time (PIT) relation-
ship (e.g., Flash-copy in IBM SVC [12]) is maintained
between the active data (either the primarymdisk or
one of the active replicas) and all other copies of the
same data. Ago-to-syncoperation is performed periodi-
cally between the active data and all its copies on active
mdisks. This ensures that when anmdisk is spun up or
down, the amount of data to be synchronized is small.
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5.5 Replica Manager
The Replica Managerensures that the replica data set
for avdisk is able to mimic the working set of thevdisk
over time. If a data block unavailable at the active replica
of thevdisk is read causing areplica miss, the Replica
Manager copies the block to the replica space assigned to
the active replica and adds the block to theReplica Meta-
data accordingly. Finally, theReplica Manageruses a
Least Recently Used (LRU) policy to evict an older block
in case the replica space assigned to a replica is filled
up. If the active data set changes drastically, there may
be a large number ofreplica misses. All these replica
misses can be handled by a single spin-up of the pri-
marymdisk. Once all the data in the new working set
is touched, the primarymdisk can be spun-down as the
active replica is now up-to-date. The continuous updat-
ing of the Replica Metadataenables SRCMap to meet
the goal ofWorkload shift adaptation, without re-running
the expensivereplica generation flow. Thereplica gener-
ation flowneeds to re-run only when a disruptive change
occurs such as addition of a new workload or a new vol-
ume or new disks to a volume.

6 Algorithms and Optimizations

In this section, we present details about the algorithms
employed by SRCMap. We first present the long-term
replica placement methodology and subsequently, the
short-term active disk identification method.

6.1 Replica Placement Algorithm
The Replica Placement Controllercreates one or more
replicas of the working set of eachvdisk on the available
replica space on the targetmdisks. We use the insight
that all replicas are not created equal and have distinct
associated costs and benefits. The space cost of creating
the replica is lower if thevdisk has a smaller working
set. Similarly, the benefit of creating a replica is higher
if the vdisk (i) has a stable working set (lower misses
if the primarymdisk is switched off), (ii) has a small
average load making it easy to find spare bandwidth for
it on any targetmdisk, and (iii) is hosted on a less power-
efficient primarymdisk. Hence, the goal of bothReplica
PlacementandActive Disk Identificationis to ensure that
we create more replicas forvdisks that have a favorable
cost-benefit ratio. The goal of the replica placement is
to ensure that if theActive Disk Managerdecides to spin
down the primarymdisk of avdisk, it should be able to
find at least one active targetmdisk that hosts its replica,
captured in the followingOrdering Property.

Definition 1 Ordering Property: For any twovdisksVi

andVj , if Vi is more likely to require a replica target than
Vj at any timet during Active Disk Identification, then
Vi is more likely thanVj to find a replica target amongst
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Figure 5:Replica Placement Model

activemdisks at timet.

The replica placement algorithmconsists of (i) creat-
ing an initial ordering ofvdisks in terms of cost-benefit
tradeoff (ii) a bipartite graph creation that reflects this
ordering (iii) iteratively creating one source-target map-
ping respecting the current order and (iv) re-calibration
of edge weights to ensure theOrdering Propertyholds
for the next iteration of source-target mapping.

6.1.1 Initial vdisk ordering
The Initialvdisk ordering creates a sorted order amongst
vdisks based on their cost-benefit tradeoff. For each
vdisk Vi, we compute the probabilityPi that its primary
mdisk Mi would be spun down as

Pi =
w1WSmin

WSi

+
w2PPRmin

PPRi

+
w3ρmin

ρi
+

wfmmin

mi

(1)
where thewk are tunable weights,WSi is the size of the
working set ofVi, PPRi is the performance-power ratio
(ratio between the peak IO bandwidth and peak power)
for the primary mdiskMi of Vi, ρi is the average long-
term I/O workload intensity (measured in IOPS) forVi,
andmi is the number of read misses in the working set
of Vi, normalized by the number of spindles used by its
primary mdiskMi. The correspondingmin subscript
terms represent the minimum values across all thevdisks
and provide normalization. The probability formulation
is based on the dual rationale that it is relatively easier to
find a targetmdisk for a smaller workload and switch-
ing off relatively more power-hungry disks saves more
power. Further, we assign a higher probability for spin-
ning downmdisks that host more stable working sets by
accounting for the number of times a read request can-
not be served from the replicated working set, thereby
necessitating the spinning up of the primarymdisk.

6.1.2 Bipartite graph creation
Replica Placementcreates a bipartite graphG(V → M)
with eachvdisk as a source nodeVi, its primarymdisk
as a target nodeMi, and the edge weightse(Vi,Mj) rep-
resenting the cost-benefit trade-off of placing a replica
of Vi on Mj (Fig. 5). The nodes in the bipartite graph
are sorted usingPi (disks with largerPi are at the top).
We initialize the edge weightswi,j = Pi for each edge
e(Vi,Mj) (source-target pair). Initially, there are no
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replica assignments made to any targetmdisk. The
replica placement algorithm iterates through the follow-
ing two steps, until all the available replica space on the
targetmdisks have been assigned to sourcevdisk repli-
cas. In each iteration, exactly one targetmdisk’s replica
space is assigned.

6.1.3 Source-Target mapping
The goal of the replica placement method is to achieve a
source target mapping that achieves theOrdering prop-
erty. To achieve this goal, the algorithm takes the top-
most targetmdisk Mi whose replica space is not yet
assigned and selects the set of highest weight incident
edges such that the combined replica size of the source
nodes in this set fills up the replica space available inMi

(e.g, the working sets ofV1 andVN are replicated in the
replica space ofM2 in Fig. 5). When the replica space
on a targetmdisk is filled up, we mark the targetmdisk
as assigned. One may observe that this procedure always
gives preference to source nodes with a largerPi. Once
anmdisk finds a replica, the likelihood of it requiring
another replica decreases and we factor this using a re-
calibration of edge weights, which is detailed next.

6.1.4 Re-calibration of edge weights
We observe that the initial assignments of weights en-
sure theOrdering property. However, once the work-
ing set of avdisk Vi has been replicated on a set of tar-
getmdisksTi = M1, . . . ,Mleast (Mleast is themdisk
with the leastPi in Ti) s.t. Pi > Pleast, the probability
thatVi would require a new targetmdisk duringActive
Disk Identificationis the probability that bothMi and
Mleast would be spun down. Hence, to preserve theOr-
dering property, we re-calibrate the edge weights of all
outgoing edges of any primarymdisks Si assigned to
target mdisksTj as

∀k wi,k = PjPi (2)

Once the weights are recomputed, we iterate from the
Source-Target mapping step until all the replicas have
been assigned to targetmdisks. One may observe that
the re-calibration succeeds in achieving theOrdering
property because we start assigning the replica space for
the top-most targetmdisks first. This allows us to in-
crease the weights of source nodes monotonically as we

S = set of disks to be spun down
A = set of disks to be active
Sort S by reverse ofPi

Sort A byPi

For eachDi ∈ S

For eachDj ∈ A

If Dj hosts a replicaRi of Di AND
Dj has spare bandwidth forRi

Candidate(Di) = Dj , break

End-For
If Candidate(Di)==null returnFailure

End-for
∀i, Di ∈ S returnCandidate(Di)

Figure 7:Active Replica Identification algorithm

place more replicas of its working set. We formally prove
the following result in the appendix.

Theorem 1 The Replica Placement Algorithmensures
ordering property.

6.2 Active Disk Identification
We now describe the methodology employed to identify
the set of activemdisks and replicas at any given time.
For ease of exposition, we define the probabilityPi of
a primarymdisk Mi equal to the probabilityPi of its
vdisk Vi. Active disk identification consists of:

I: Activemdisk Selection:We first estimate the expected
aggregate workload to the storage subsystem in the next
interval. We use the workload to avdisk in the previ-
ous interval as the predicted workload in the next interval
for thevdisk. The aggregate workload is then estimated
as sum of the predicted workloads for allvdisks in the
storage system. This aggregate workload is then used to
identify the minimum subset ofmdisks (ordered by re-
verse ofPi) such that the aggregate bandwidth of these
mdisks exceeds the expected aggregate load.
II: Active Replica Identification:This step elaborated
shortly identifies one (of the many possible) replicas on
an activemdisk for each inactivemdisk to serve the
workload redirected from the inactivemdisk.
III: Iterate: If the Active Replica Identification step suc-
ceeds in finding an active replica for all the inactive
mdisks, the algorithm terminates. Else, the number of
activemdisks are increased by1 and the algorithm re-
peats the Active Replica Identification step.

One may note that since the number of active disks
are based on the maximum predicted load in a consoli-
dation interval, a sudden increase in load may lead to an
increase in response times. If performance degradation
beyond user-defined acceptable levels persists beyond a
user-defined interval (e.g, 5 mins), theActive Disk Iden-
tification is repeated for the new load.

6.2.1 Active Replica Identification
Fig. 6 depicts the high-level goal of Active Replica
Identification, which is to have the primarymdisks for
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vdisks with largerPi spun down, and their workload
directed to fewmdisks with smallerPi. To do so, it
must identify an active replica for each inactive primary
mdisk, on one of the activemdisks. The algorithm uses
two insights: (i) TheReplica Placementprocess creates
more replicas forvdisks with a higher probability of be-
ing spun down (Pi) and (ii) primarymdisks with larger
Pi are likely to be spun down for a longer time.

To utilize the first insight, we first allow primary
mdisks with smallPi, which are marked as inactive, to
find an active replica, as they have fewer choices avail-
able. To utilize the second insight, we force inactive pri-
mary mdisks with largePi to use a replica on active
mdisks with smallPi. For example in Fig. 6,vdisk Vk

has the first choice of finding an activemdisk that hosts
its replica and in this case, it is able to select the first
activemdisk Mk+1. As a result, inactivemdisks with
largerPi are mapped to activemdisks with the smaller
Pi (e.g,V1 is mapped toMN ). Since anmdisk with the
smallestPi is likely to remain active most of the time,
this ensures that there is little to no need to ‘switch active
replicas’ frequently for the inactive disks. The details of
this methodology are described in Fig. 7.

6.3 Key Optimizations to Basic SRCMap
We augment the basic SRCMap algorithm to increase its
practical usability and effectiveness as follows.

6.3.1 Sub-volume creation
SRCMap redirects the workload for any primarymdisk
that is spun down to exactly one targetmdisk. Hence,
a targetmdisk Mj for a primarymdisk Mi needs to
support the combined load of the vdisksVi andVj in
order to be selected. With this requirement, the SR-
CMap consolidation process may incur a fragmentation
of the available I/O bandwidth across all volumes. To
elaborate, consider an example scenario with10 iden-
tical mdisks, each with capacityC and input load of
C/2 + δ. Note that even though this load can be served
using10/2 + 1 mdisks, there is no singlemdisk can
support the input load of2 vdisks. To avoid such a
scenario, SRCMap sub-divides eachmdisk into NSV

sub-volumes and identifies the working set for each sub-
volume separately. The sub-replicas (working sets of a
sub-volume) are then placed independently of each other
on targetmdisks. With this optimization, SRCMap is
able to subdivide the least amount of load that can be mi-
grated, thereby dealing with the fragmentation problem
in a straightforward manner.

This optimization requires a complementary modifi-
cation to theReplica Placementalgorithm. The Source-
Target mapping step is modified to ensure that sub-
replicas belonging to the same sourcevdisk are not co-
located on a targetmdisk.

6.3.2 Scratch Space for Writes and Missed Reads
SRCMap incorporates the basic write off-loading mech-
anism as proposed by Narayananet al. [18]. The current
implementation of SRCMap uses an additional alloca-
tion of write scratch space with each sub-replica to ab-
sorb new writes to the corresponding portion of the data
volume. A future optimization is to use a single write
scratch space within each targetmdisk rather than one
per sub-replica within the targetmdisk so that the over-
head for absorbing writes can be minimized.

A key difference from write off-loading, however, is
that on aread missfor a spun down volume, SRCMap
additionally offloads the data read to dynamically learn
the working-set. This helps SRCMap achieve the goal
of Workload Shift Adaptationwith change in working set.
While write off-loading uses the inter read-miss dura-
tions exclusively for spin down operations, SRCMap tar-
gets capturing entire working-sets including both reads
and writes in replica locations to prolong read-miss du-
rations to the order of hours and thus places more impor-
tance on learning changes in the working-set.

7 Evaluation

In this section, we evaluate SRCMap using a prototype
implementation of SRCMap-based storage virtualization
manager and an energy simulator seeded by the proto-
type. We investigate the following questions:

1. What degree of proportionality in energy consump-
tion and I/O load can be achieved using SRCMap?
2. How does SRCMap impact reliability?
3. What is the impact of storage consolidation on the
I/O performance?
4. How sensitive are the energy savings to the amount
of over-provisioned space?
5. What is the overhead associated with implementing
an SRCMap indirection optimization?

Workload The workloads used consist of I/O requests
to eight independent data volumes, each mapped to an
independent disk drive. In practice, volumes will likely
comprise of more than one disk, but resource restrictions
did not allow us to create a more expansive testbed. We
argue thatrelativeenergy consumption results still hold
despite this approximation. These volumes support a mix
of production web-servers from the FIU CS department
data center, end-userhomes data, and our lab’s Subver-
sion (SVN) and Wiki servers as detailed in Table 3.

Workload I/O statistics were obtained by runningblk-
trace [1] on each volume. Observe that there is a wide
variance in their load intensity values, creating opportu-
nities for consolidation across volumes.

Storage TestbedFor experimental evaluation, we set up
a single machine (Intel Pentium 4 HT 3GHz, 1GB mem-
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Volume ID Disk Model Size [GB] Avg IOPS Max IOPS

home-1 D0 WD5000AAKB 270 8.17 23
online D1 WD360GD 7.8 22.62 82
webmail D2 WD360GD 7.8 25.35 90
webresrc D3 WD360GD 10 7.99 59
webusers D4 WD360GD 10 18.75 37
svn-wiki D5 WD360GD 20 1.12 4
home-2 D6 WD2500AAKS 170 0.86 4
home-3 D7 WD2500AAKS 170 1.37 12

Table 3:Workload and storage system details.
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Figure 8:Logical view of experimental setup

ory) connected to 8 disks via two SATA-II controllers
A andB. The cumulative (merged workload) trace is
played back usingbtreplay[1] with each volume’s trace
played back to the corresponding disk. All the disks
share one power supplyP that is dedicated only for the
experimental drives; the machine connects to another
power supply. The power supplyP is connected to a
Watts up? PROpower meter [29] which allows us to
measure power consumption at a one second granularity
with a resolution of 0.1W. An overhead of 6.4W is intro-
duced by the power supply itself which we deduct from
all our power measurements.

Experimental Setup We describe the experimental
setup used in our evaluation study in Fig. 8. We im-
plemented an SRCMap module with its algorithms for
replica placement and active disk identification during
any consolidation interval. An overall experimental run
consists of using the monitored data to (1) identify the
consolidation candidates for each interval and create
the virtual-to-physical mapping (2) modify the original
traces to reflect the mapping and replaying it, and (3)
power and response time reporting. At each consolida-
tion event, theWorkload Modifiergenerates the neces-
sary additional I/O to synchronize data across the sub-
volumes affected due to active replica changes.

We evaluate SRCMap using two different sets of ex-
periments:(i) prototype runs and(ii) simulated runs. The
prototype runs evaluate SRCMap against a real storage
system and enable realistic measurements of power con-
sumption and impact to I/O performance via the report-
ing module. In a prototype run, the modified I/O work-
load is replayed on the actual testbed usingbtreplay[1].

Volume L(0) L(1) L(2) L(3) L(4)
ID [IOPS] [IOPS] [IOPS] [IOPS] [IOPS]

D0 33 57 74 96 125
D1-D5 52 89 116 150 196
D6, D7 38 66 86 112 145

(a)
0 1 2 3 4 5 6 7 8

19.8 27.2 32.7 39.1 44.3 49.3 55.7 59.7 66.1
(b)

Table 4: Experimental settings: (a) Estimated disk
IOPS capacity levels. (b) Storage system power con-
sumption in Watts as the number of disks in active
mode are varied from 0 to 8. All disks consumed ap-
proximately the same power when active. The disks not
in active mode consume standby power which was found
to be the same across all disks.

The simulator runs operate similarly on a simulated
testbed, wherein a power model instantiated with power
measurements from the testbed is used for reporting the
power numbers. The advantage with the simulator is the
ability to carry out longer duration experiments in sim-
ulated time as opposed to real-time allowing us to ex-
plore the parameter space efficiently. Further, one may
use it to simulate various types of storage testbeds to
study the performance under various load conditions. In
particular, we use the simulator runs to evaluate energy-
proportionality by simulating the testbed with different
values of disk IOPS capacity estimates. We also simulate
alternate power management techniques (e.g., caching,
replication) for a comparative evaluation.

All experiments with the prototype and the simula-
tor were performed with the following configuration pa-
rameters. The consolidation interval was chosen to be 2
hours for all experiments to restrict the worst-case spin-
up cycles for the disk drives to an acceptable value. Two
minute disk timeouts were used for inactive disks; active
disks within a consolidation interval remain continuously
active. Working sets and replicas were created based on
a three week workload history and we report results for
a subsequent 24 hour duration for brevity. The consoli-
dation is based on an estimate of the disk IOPS capacity,
which varies for each volume. We computed an estimate
of the disk IOPS using a synthetic random I/O workload
for each volume separately (LevelL1). We use5 IOPS
estimation levels (L0 through L4) to (a) simulate storage
testbeds at different load factors and (b) study the sen-
sitivity of SRCMap with the volume IOPS estimation.
The per volume sustainable IOPS at each of these load
levels is provided in Table 4(a). The power consumption
of the storage system with varying number of disks in
active mode is presented in Table 4(b).

7.1 Prototype Results
For the prototype evaluation, we took the most dy-
namic 8-hour period (4 consolidation intervals) from the
24 hours and played back I/O traces for the 8 work-
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Figure 9:Power and active disks time-line.

loads described earlier in real-time. We report actual
power consumption and the I/O response time (which
includes queuing and service time) distribution for SR-
CMap when compared to a baseline configuration where
all disks are continuously active. Power consumption
was measured every second and disk active/standby state
information was polled every 5 seconds. We used2 dif-
ferent IOPS levels;L0 when a very conservative (low)
estimate of the disk IOPS capacity is made andL3 when
a reasonably aggressive (high) estimate is made.

We study the power savings due to SRCMap in Fig-
ure 9. Even using a conservative estimate of disk IOPS,
we are able to spin down approximately4.33 disks on
an average, leading to an average savings of23.5W
(35.5%). Using an aggressive estimate of disk IOPS, SR-
CMap is able to spin down7 disks saving38.9W (59%)
for all periods other than the4hr-6hr period. In the 4-6
hr period, it uses2 disks leading to a power savings of
33.4W (50%). The spikes in the power consumption re-
late to planned and unplanned (due to read misses) vol-
ume activations, which are few in number. It is impor-
tant to note that substantial power is used in maintaining
standby states (19.8W ) and within the dynamic range,
the power savings due to SRCMap are even higher.

We next investigate any performance penalty incurred
due to consolidation. Fig. 10 (upper) depicts the cumula-
tive probability density function (CDF) of response times
for three different configurations:Baseline - On– no
consolidation and all disks always active, SRCMap us-
ingL0, andL3. The accuracy of the CDFs forL0 andL3

suffer from a reporting artifact that the CDFs include the
latencies for the synchronization I/Os themselves which
we were not able to filter out. We throttle the synchro-
nization I/Os to one every 10ms to reduce their interfer-
ence with foreground operations.

First, we observed that less than 0.003% of the re-
quests incurred a spin-up hit due to read misses result-
ing in latencies of greater than 4 seconds in both theL0

andL3 configurations (not shown). This implies that the
working-set dynamically updated with missed reads and
offloaded writes is a fairly at capturing the active data
for these workloads. Second, we observe that for re-
sponse times greater than 1ms,Baseline - Ondemon-
strates better performance thanL0 andL3 (upper plot).
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Figure 10:Impact of consolidation on response time.

For bothL0 andL3, less than 8% of requests incur la-
tencies greater than 10ms, less than 2% of requests in-
cur latencies greater than 100ms.L0, having more disks
at its disposal, shows slightly better response times than
L3. For response times lower than 1ms a reverse trend is
observed wherein the SRCMap configurations do better
thanBaseline - On. We conjectured that this is due to
the influence of the low latency writes during synchro-
nization operations.

To further delineate the influence of synchronization
I/Os, we performed two additional runs. In the first run,
we disable all synchronization I/Os and in the second,
we disable all foreground I/Os (lower plot). The CDFs
of only the synchronization operations, which show a bi-
modal distribution with 50% low-latency writes absorbed
by the disk buffer and 50% reads with latencies greater
than 1.5ms, indicate that synchronization reads are con-
tributing towards the increased latencies inL0 andL3 for
the upper plot. The CDF without synchronization (’w/o
synch’) is much closer toBaseline - Onwith a decrease
of approximately 10% in the number of request with la-
tencies greater than 1ms. Intelligent scheduling of syn-
chronization I/Os is an important area of future work to
further reduce the impact on foreground I/O operations.

7.2 Simulator Results
We conducted several experiments with simulated
testbeds hosting disks of capacitiesL0 toL4. For brevity,
we report our observations for disk capacity levelsL0
andL3, expanding to other levels only when required.

7.2.1 Comparative Evaluation
We first demonstrate the basic energy proportionality
achieved by SRCMap in its most conservative config-
uration (L0) and three alternate solutions,Caching-1,
Caching-2, andReplication. Caching-1is a scheme that
uses 1 additional physical volume as a cache. If the ag-
gregate load observed is less than the IOPS capacity of
the cache volume, the workload is redirected to the cache
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and aggregate load across time for a single day.

volume. If the load is higher, the original physical vol-
umes are used.Caching-2uses 2 cache volumes in a sim-
ilar manner.Replicationidentifies pairs of physical vol-
umes with similar bandwidths and creates replica pairs,
where all the data on one volume is replicated on the
other. If the aggregate load to a pair is less than the IOPS
capacity of one volume, only one in the pair is kept ac-
tive, else both volumes are kept active.

Figure 11 evaluates power consumption of all four so-
lutions by simulating the power consumed as volumes
are spun up/down over 12 2-hour consolidation intervals.
It also presents the average load (measured in IOPS)
within each consolidation interval. In the case of SR-
CMap, read misses are indicated by instantaneous power
spikes which require activating an additional disk drive.
To avoid clutter, we do not show the spikes due to read
misses for the Cache-1/2 configurations. We observe that
each of solutions demonstrate varying degrees of energy
proportionality across the intervals. SRCMap (L0) uni-
formly consumes the least amount of power across all in-
tervals and its power consumption is proportional to load.
Replication also demonstrates good energy proportional-
ity but at a higher power consumption on an average. The
caching configurations are the least energy proportional
with only two effective energy levels to work with.

We also observe that SRCMap remaps (i.e., changes
the active replica for) a minimal number of volumes – ei-
ther 0, 1, or 2 during each consolidation interval. In fact,
we found that for all durations the number of volumes be-
ing remapped equaled the change in the number of active
physical volumes. indicating that the number of synchro-
nization operations are kept to the minimum. Finally, in
our system with eight volumes, Caching-1, Caching-2,
and Replication use 12.5%, 25% and 100% additional
space respectively, while as we shall show later, SR-
CMap is able to deliver almost all its energy savings with
just 10% additional space.

Next, we investigate how SRCMap modifies per-
volume activity and power consumption with an aggres-
sive configuration L3, a configuration that demonstrated
interesting consolidation dynamics over the 12 2-hour
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Figure 12: Load and power consumption for each
disk. Y ranges for all loads is[1 : 130] IOPS in log-
arithmic scale.Y ranges for power is[0 : 19] W.

consolidation intervals. Each row in Figure 12 is specific
to one of the eight volumesD0 throughD7. The left and
center columns show the original and SRCMap-modified
load (IOPS) for each volume. The modified load were
consolidated on disksD2 andD3 by SRCMap. Note that
disksD6 andD7 are continuously in standby mode,D3
is continuously in active mode throughout the 24 hour
duration while the remaining disks switched states more
than once. Of these,D0, D1 andD5 were maintained
in standby mode by SRCMap, but were spun up one or
more times due to read misses to their replica volumes,
while D2 was made active by SRCMap for two of the
consolidation intervals only.

We note that the number of spin-up cycles did not ex-
ceed6 for any physical volume during the24 hour pe-
riod, thus not sacrificing reliability. Due to the reliability-
aware design of SRCMap, volumes marked as active
consume power even when there is idleness over shorter,
sub-interval durations. For the right column, power con-
sumption for each disk in either active mode or spun
down is shown with spikes representing spin-ups due to
read misses in the volume’s active replica. Further, even
if the working set changes drastically during an interval,
it only leads to a single spin up that services a large num-
ber of misses. For example,D1 served approximately
5∗104 misses in the single spin-up it had to incur (Figure
omitted due to lack of space). We also note that summing
up power consumption of individual volumes cannot be
used to compute total power as per Table 4(b).

7.2.2 Sensitivity with Space Overhead

We evaluated the sensitivity of SRCMap energy savings
with the amount of over-provisioned space to store vol-
ume working sets. Figure 13 depicts the average power
consumption of the entire storage system (i.e., all eight
volumes) across a 24 hour interval as the amount of over-
provisioned space is varied as a percentage of the total
storage space for the load levelL0. We observe that SR-
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CMap is able to deliver most of its energy savings with
10% space over-provisioning and all savings with 20%.
Hence, we conclude that SRCMap can deliver power sav-
ings with minimal replica space.

7.2.3 Energy Proportionality

Our next experiment evaluates the degree of energy pro-
portionality to the total load on the storage system de-
livered by SRCMap. For this experiment, we examined
the power consumption within each 2-hour consolida-
tion interval across the 24-hour duration for each of the
five load estimation levels L0 through L4, giving us 60
data points. Further, we created a few higher load lev-
els belowL0 to study energy proportionality at high load
as well. Each data point is characterized by an average
power consumption value and aload factorvalue which
is the observed average IOPS load as a percentage of
the estimated IOPS capacity (based on the load estima-
tion level) across all the volumes. Figure 14 presents the
power consumption at each load factor. Even though the
load factor is a continuous variable, power consumption
levels in SRCMap are discrete. One may note that SR-
CMap can only vary one volume at a time and hence the
different power-performance levels in SRCMap differ
by one physical volume. We do observe that SRCMap
is able to achieve close toN -level proportionality for a
system withN -volumes, demonstrating a step-wise lin-
ear increase in power levels with increasing load.

7.3 Resource overhead of SRCMap

The primary resource overhead in SRCMap is the mem-
ory used by theReplica Metadata (map)of the Replica
manager. This memory overhead depends on the size of
the replica space maintained on each volume for storing
both working-sets and off-loaded writes. We maintain a
per-block map entry, which consists of5 bytes to point to
the current active replica.4 additional bytes keep what
replicas contain the last data version and4 more bytes
are used to handle the I/Os absorbed in the replica-space
write buffer, making a total of 13 bytes for each entry in
the map. IfN is the number of volumes of sizeS with
R% space to store replicas, then the worst-case memory
consumption is approximately equal to themapsize, ex-
pressed asN×S×R×13
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Figure 14:Energy proportionality with load.

ager that manages 10 volumes of total size 10TB, each
with a replica space allocation of 100GB (10% over-
provisioning), the memory overhead is only 3.2GB, eas-
ily affordable for a high-end storage virtualization man-
ager.

8 Conclusions and Future Work
In this work, we have proposed and evaluated SRCMap,
a storage virtualization solution for energy-proportional
storage. SRCMap establishes the feasibility of an energy
proportional storage system with fully flexible dynamic
storage consolidation along the lines of server consoli-
dation where any virtual machine can be migrated to any
physical server in the cluster. SRCMap is able to meet all
the desired goals of fine-grained energy proportionality,
low space overhead, reliability, workload shift adapta-
tion, and heterogeneity support.

Our work opens up several new directions for further
research. Some of the most important modeling and op-
timization solutions that will improve a system like SR-
CMap are (i) new models that capture the performance
impact of storage consolidation, (ii) investigating the use
of workload correlation between logical volumes dur-
ing consolidation, and (iii) optimizing the scheduling
of replica synchronization to minimize impact on fore-
ground I/O.
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A Appendix

A.1 Proof of Theorem 1

Proof: Note that the algorithm always selects the source nodes
with the highest outgoing edge weight. Hence, it suffices to
show that the outgoing edge weight of a source node equals
(or is proportional to) the probability of it requiring a replica
target on an active disk. Observe that the ordering property
on weights holds in the first iteration of the algorithm as the
outgoing edge weight for eachmdisk is the probability of it
being spun down (or requiring a replica target). We argue that
the re-calibration step ensures that theOrdering propertyholds
inductively for all subsequent iterations.

Assuming the property holds for themth iteration, consider
the(m+1)th iteration of the algorithm. We classify all source
nodes into three categories: (i)mdisks with Pi lower than
thePm+1, (ii) mdisks with Pi higher thanPm+1 but with no
replicas assigned to targets, and (iii)mdisks with Pi higher
thanPm+1 but with replicas assigned already. Note that for
the first and second category ofmdisks, the outgoing edge
weights are equal to their initial values and hence their proba-
bility of their being spun down is same as the edge weights. For
the third category, we restrict attention tomdisks with only
one replica copy, while observing that the argument holds for
the general case as well. Assume that themdisk Si has replica
placed onmdisk Tj . Observe then that the re-calibration prop-
erty ensures that the current weight of edgewi,j isPiPj , which
equals the probability that bothSi andTj are spun down. Note
also thatSi would require an active target other thanTj if Tj

is also spun down, and hence the likelihood ofSi requiring a
replica target (amongst active disks) is preciselyPiPj . Hence,
the ordering property holds for the(m+1)th iteration as well.
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